3D Smith Chart tool – version 1.02 released

http://www.3dsmithchart.com/

Andrei Muller, Alin Moldoveanu, Victor Asavei, Cristian Fleischer

The 3D Smith chart tool v. 1.01 was extending the Smith chart capabilities and making it usable for circuits with negative resistance on the unit sphere.

Fig 1: Smith chart bounded by the unit circle, 3D Smith chart, all circle arcs gather together in the south hemisphere. Main idea behind the initial 3D Smith chart tool v.101: Circuits with reflection coefficient magnitude bigger than 1 (negative resistance) are mapped in the South hemisphere, North hemisphere is for passive circuits (with positive input impedance resistance classical Smith chart), East inductive, West capacitive. North pole: perfect match, South pole infinite mismatch. The tool is proposed for amplifier stability analysis, oscillator design, filters and group delay analysis and is based on [1-3].

Based on the preprint article https://arxiv.org/abs/1905.09701 [4], several new functionalities were added into the 3D Smith chart Windows 64 bit compatible chart tool available since 17.07.2019 here: http://www.3dsmithchart.com/

- **3D frequency** (live) sweeping representation (for visualizing the dynamics of the S parameters variation). For example, negative capacitances & positive inductances can be directly distinguished due to their opposed frequency sweeping orientation. Furthermore, no uncertainty on the sweeping range start & end points occurs now while interpreting the results. Illustrated in Fig. 2 and 3.

- **Unique inductor quality factor visualization over the S11 parameters in 3D**, 3D inductance display over the S11 parameter and Q as a generalized cylinder of a radius corresponding to its normalized value for each frequency point. Different models of definitions are used (shunt inductor model, series inductor model), as in Fig. 4.

- **Several improvements in terms of rendering/visualizations**, helpful both in actual design and learning the 2D Smith and 3D Smith chart concepts (axes system, “Greenwich” constant resistance meridian, surface transparency etc) – Fig. 5.
Fig. 2 3D frequency sweeping representation over the S_{11} parameters. The normalized frequency is seen as the distance from the surface for each frequency point of each circuit. The paths of the 2nH and -2pF coincide on a specific frequency range [4], however their orientation on the 1-7 GHz range is different as frequency increases. Green negative capacitance (counter clockwise), cyan (positive inductor).

Fig. 3 3D frequency sweeping representation over the S_{21}. The paths of the 2nH inductor and -2pF capacitor represented between 1 and 3 GHz.
Fig. 4 3D Smith chart representation for the shunt inductance and quality factor for different inductors within 1-16 GHz. As the inductance becomes negative it enters the 3D Smith chart interior. The quality factor is represented as a generalized cylinder for each frequency point around the corresponding inductance.

Fig. 5 Improved matching capabilities on r,x,g,b circles: the user can now view the axes, render the circles in a way that improves their depth perception, highlight the “Greenwich” constant resistance meridian and configure the transparencies of the 3D chart.

Explanatory video: https://www.youtube.com/watch?v=kk1aGb8d_rg
Current pricing: http://3dsmithchart.com/#quote